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1 Introduction

The National Oceanic and Atmospheric Administration’s (NOAA) National Standard 1 states that fish stocks
can be grouped together into complexes for reasons including “where stocks in a multispecies fishery cannot
be targeted independent of one another; where there is insufficient data to measure a stock’s status relative
to SDC [status determination criteria]; or when it is not feasible for fishermen to distinguish individual
stocks among their catch.” Following these guidelines, fishery managers in the U.S. sometimes group similar
species together into complexes for assessment and management purposes. In other cases, the development of
relatively inexpensive tools for rapid DNA sequencing has lead to the discovery that stocks that are assessed
and managed as a single species are in fact made up of several cryptic species; genetically distinct and often
reproductively isolated populations that were previously classified as a single nominal species (Bickford et al.,
2007).

The individual species within a multi-species fishery, whether unknown cryptic species or species grouped
together for practical purposes, are likely to differ in terms of life-history parameters (e.g., growth, natural
mortality, stock-recruitment relationship) and subsequently will differ in terms of their biological reference
points such as maximum sustainable yield (MSY), and the equilibrium biomass and fishing mortality (BMSY

and FMSY respectively) that correspond with MSY. This stock-specific variability is not explicitly accounted
for when the fishery is managed as a single species. For example, stock assessments often treat a multi-species
fishery as a single stock with common life-history characteristics, and therefore are expected to under-estimate
the target exploitation rate for the more productive stocks within the complex and over-estimate it for those
that are less productive.

The potential problems with assessing and managing a stock complex as if it were a single species have
been generally recognized (Bizzarro et al., 2020; DeMartini, 2019; Dick & MacCall, 2010; Hicks et al., 2014).
The additional scientific uncertainty associated with managing multiple species as a complex has often been
accounted for by increasing the ‘uncertainty buffers’ that are used to alter the prescribed management
advice [e.g., reduce a catch limit; Hicks et al. (2014)]. However, these uncertainty buffers have usually been
developed in the context of single-species management and their performance for the species within a stock
complex has rarely been quantified (DeMartini, 2019). Consequently, there is a need for a standardized
framework for quantifying the performance of management approaches that manage several species within a
stock complex as a single species, and comparing the risks to those associated with managing the individual
species separately.

The purpose of this document is to provide a reproducible example of how the openMSE framework can
be used to evaluate the performance of alternative management options for multispecies fisheries that are
managed assuming a single stock. We use a case study from the Pacific Fishery Management Council’s
(PFMC) Groundfish Fishery Management Plan (FMP) together with the PFMC’s uncertainty buffer approach
to demonstrate the approach. However, the framework is designed to be flexible, and it should be clear from
this document how it can be used to evaluate the performance of alternative assessment and management
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models the used by the PFMC and other regional management councils.

1.1 Overview of the Case Study

The case study is based on the blue-deacon rockfish complex, managed by the PFMC and consisting of two
species, blue (Sebastes mystinus) and deacon rockfish (S. diaconus). The stocks were thought to be a single
species until morphometric and microsatellite genetic analysis by Frable et al. (2015) confirmed they were two
genetically distinct stocks. Although now recognized as distinct species, because of the inability to distinguish
historical landings by species and a lack of species-specific life-history information the two stocks are still
assessed and managed as a complex (Bizzarro et al., 2020; Dick et al., 2017).

For simplicity and clarity, we restrict this demonstration of the framework to the case of 2 species in a
multi-species fishery (e.g., cryptic species) being assessed with a single population dynamics model. However,
the process outlined in this document can be easily be modified to model a complex with 3 or more species.

1.2 Overview of the PFMC’s P* Approach

The PFMC uses an approach known as P* (p-star) to set the catch limits for the groundfish stocks. The P*
approach involves three steps. First, an overfishing limit (OFL) is calculated as the expected catch obtained
from applying the maximum acceptable fishing mortality rate (Flim) to the estimated current stock biomass.
For rockfish, the PFMC has defined Flim as the fishing mortality rate corresponding with a 50% spawning
potential ratio (SPR); F50%.

Next, an acceptable biological catch (ABC) limit is calculated by applying a multiplicative uncertainty buffer
that reduces the OFL to account for scientific uncertainty, a term collectively referring to the underlying
stochastic variability in the population dynamics (i.e., process error), observation error in the data collection
process, and uncertainty due to the structure of the assessment model and error in the assumed and estimated
parameters. The uncertainty buffer used to calculate the ABC from the OFL is determined using the P*
approach, where P* is the percentile of the log-normal OFL distribution with standard deviation σOFL. P*
must never exceed 0.5 and is typically set to values of 0.4 or 0.45.

Finally, an annual catch limit (ACL) is calculated by applying a 40-10 harvest control rule (HCR) that
reduces linearly the ACL from the ABC when the estimated relative spawning biomass (SB/SB0) is below
0.4, with ACL set to zero when SB

SB0
< 0.1

The PFMC places groundfish stocks into 3 categories based on the quality of the data and assessment and
specify minimum values for σOFL of 0.5 (Category 1), 1 (Category 2), and 2 (Category 3). Coupled with
P*=0.45, this results in an uncertainty buffer of 0.939, 0.882, and 0.778 for Categories 1 – 3 respectively;
equivalent to setting the ABC 6.1%, 11.8% and 22.2% lower than the OFL.

Recently the PFMC adopted a new policy to account for additional uncertainty in the years between stock
assessments by increasing σOFL for Category 1 and 2 stocks by 7.5% each year since the most recent assessment
(Anon., 2019). The σOFL is reset to the baseline level when a full or update assessment is conducted.
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1.3 Technical Details of the Framework

The framework has been developed with openMSE, an open-source software package that includes the
MSEtool, SAMtool, and DLMtool R packages.

The framework requires the most recent version of the openMSE R package:

install.packages('openMSE')

This will also install the most recent versions of MSEtool, SAMtool, and DLMtool:

packageVersion('MSEtool')

## [1] '3.2.909'

packageVersion('SAMtool')

## [1] '1.2.2'

packageVersion('DLMtool')

## [1] '6.0.3'

2 Generating Multi-Species Operating Models

Multi-stock operating models contain parameters describing the biological characteristics of the stocks
within the multi-species fishery, the properties of the fleet(s) exploiting them, the observation processes for
collecting the fishery data, and any implementation error of the prescribed management advice. This section
demonstrates the process for creating multi-stock operating models within the openMSE framework.

The framework is flexible and the same approach can be used to generate multi-stock operating models with
3 or more stocks within the complex. Similarly, while we assume male and females within each species share
the same biological parameters, if desired, users can follow this same approach and generate separate stock
objects for the female and male components of the stock, including stocks that exhibit hermaphrodism where
some males transform to females (or vice versa).

Our model assumed no spatial structure for the case studies. However, if sufficient information exists, users
can specify the stock-specific movement patterns over an unlimited number of spatial areas, and control the
spatial targeting behavior of the fishing fleet(s), including spatio-temporal closures to fishing.

To create an multi-stock operating model, we need to create Stock, Fleet, Obs, and Imp objects for each
stock within the multi-species fishery.

2.1 Stock Objects

Stock objects contain the biological parameters for the modeled population. By default, the parameters in the
Stock object are stored in the slots as upper and lower bounds of uniform distribution. In this example, we
have populated the Stock objects assuming no uncertainty in the life-history parameters (i.e., all simulations
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have the same value for each parameter). In more sophisticated analyses, it is common practice to generate
multiple operating models that span the uncertainties in the fishery dynamics (e.g., range of values of M,
etc). This can be done in two ways:

1. setting the range of a uniform distribution within a single operating model, e.g., Stock@M <- c(0.1,
0.2); or

2. using the Custom Parameters feature to provide specific, often correlated, values for the parameters.

The life-history parameters used in this demonstration of the framework are based on those reported in the
most recent stock assessment of the blue-deacon fishery (Dick et al., 2017). We have assumed some life-history
parameters for the blue and deacon rockfish stocks in this analysis, and all parameter values presented here
are for demonstration purposes only.

2.1.1 Blue rockfish stock

New stock objects are created with the new command. We create an empty stock object for the blue rockfish
and populate the slots with the assumed biological parameters:

Blue <- new('Stock')
Blue@Name <- 'Blue'
Blue@M <- c(0.119, 0.119) # Natural mortality - all simulations same value
Blue@maxage <- 35
Blue@h <- c(0.64,0.64) # steepness
Blue@SRrel <- 1 # BH SRR
Blue@Linf <- c(355,355)
Blue@K <- c(0.15,0.15)
Blue@t0 <- c(-3.04, -3.04)
Blue@L50 <- c(222, 222)
Blue@L50_95 <- c(23,23) # increment between L50 and L95
Blue@Perr <- c(0.5,0.5) # sigma R for rec-devs
Blue@AC <- c(0,0) # auto-correlation in rec-devs
Blue@a <- 3.15E-5 # alpha in L-W relationship
Blue@b <- 2.88 # beta in L-W relationship
Blue@LenCV <- c(0.1,0.1) # CV of length-at-age
Blue@R0 <- 10000 # assumed unfished recruitment
# Spatial parameters
# (assumed fully mixed stock in two equal areas; ie one area)
# Models have 2 areas by default
Blue@Size_area_1 <- Blue@Frac_area_1 <- Blue@Prob_staying <- c(0.5,0.5)
# Time-varying parameters
# (assumed stationarity)
Blue@Msd <- Blue@Linfsd <- Blue@Ksd <- c(0,0)
# Discard mortality
# (assumed none)
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Blue@Fdisc <- c(0,0)
# relative spawning biomass (depletion) at the end
# of the historical period (not used as we are providing actual F by year in cpars)
Blue@D <- c(0,0)

2.1.2 Deacon rockfish stock

The Stock object for the deacon rockfish is created in a similar manner. In this example, the deacon stock
shares identical life-history parameters to the blue rockfish, except for the von Bertalanffy growth and the
maturity-at-length parameters:

Deacon <- new('Stock')
Deacon@Name <- 'Deacon'
Deacon@M <- c(0.119, 0.119)
Deacon@maxage <- 35
Deacon@h <- c(0.64,0.64)
Deacon@SRrel <- 1
Deacon@Linf <- c(413, 413)
Deacon@K <- c(0.13,0.13)
Deacon@t0 <- c(-2.81, -2.81)
Deacon@L50 <- c(238, 238)
Deacon@L50_95 <- c(28,28)
Deacon@Perr <- c(0.5,0.5)
Deacon@AC <- c(0,0)
Deacon@a <- 3.15E-5
Deacon@b <- 2.88
Deacon@LenCV <- c(0.1,0.1)
Deacon@R0 <- 10000
Deacon@Size_area_1 <- Deacon@Frac_area_1 <- Deacon@Prob_staying <- c(0.5,0.5)
Deacon@Msd <- Deacon@Linfsd <- Deacon@Ksd <- c(0,0)
Deacon@Fdisc <- c(0,0)
Deacon@D <- c(0,0)

2.2 Fleet Objects

The fleet dynamics are stored in a Fleet object. We assume a single fleet operating on the two fully-mixed
stocks in the multi-species fishery and use the overall fleet characteristics estimated from the multiple
fleets included in assessment (Dick et al., 2017). Multiple individual fleets can be modeled if fleet-specific
management is required.

The Fleet object contains all information relating to the exploitation of the stocks:

BDFleet <- new('Fleet')
BDFleet@Name <- "Blue-Deacon Fleet"
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BDFleet@nyears <- 117 # number of years since fishery began
BDFleet@CurrentYr <- 2016 # most recent year of data used in the assessment
BDFleet@L5 <- c(185, 185) # first length at 5% selection
BDFleet@LFS <- c(315, 315) # first length at full selection
BDFleet@Vmaxlen <- c(1,1) # vulnerability at maximum length (assumed asymptotic)

The selectivity-at-length parameters are based on the overall F -at-age estimated by the 2017 stock assessment
for each year; i.e., summing the predicted F -at-age across the fleets and standardizing to a maximum value of
1. Time-varying selectivity (and retention) patterns can be specified using the Custom Parameters feature.

The Fleet object also requires the pattern in historical fishing effort. We calculate the apical F as the
maximum overall F -at-age estimated by the 2017 stock assessment.

The blue-deacon assessment was conducted using Stock Synthesis 3 (SS3). The assessment files can be
downloaded from the PFMC’s groundfish stock assessment website.

We use the SS2OM function to import the SS3 assessment into a single-stock, aggregated-fleet openMSE
operating model:

SSdir <- 'Data/blue-deacon-rockfish-CA-SS' # path to SS3 output
OMdummy <- SS2OM(SSdir, nsim=2) # dummy operating model

And then enter the overall apical F by year from the assessment in the EffLower and EffUpper slots in the
Fleet object (Figure 1):

Find <- OMdummy@cpars$Find[1,] # pattern in apical F estimated by SS3

# Both stocks have same pattern in F
BDFleet@EffYears <- seq(OMdummy@CurrentYr-OMdummy@nyears+1,

OMdummy@CurrentYr,
by=1)

BDFleet@EffLower <- Find # all simulations have same F-pattern
BDFleet@EffUpper <- Find

The remaining parameters in the Fleet object are populated with default values:

# no additional variability on catchability
BDFleet@Esd <- BDFleet@qinc <- BDFleet@qcv <- c(0,0)
# no retention curve (all selected fish are retained)
BDFleet@LR5 <- BDFleet@LFR <- c(0,0)
BDFleet@Rmaxlen <- c(1,1)
# Selectivity parameters are not relative to length-at-maturity
BDFleet@isRel <- FALSE
# No general discarding
BDFleet@DR <- c(0,0)
# F is distributed across areas proportional to vulnerable biomass
BDFleet@Spat_targ <- c(1,1)
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Figure 1: The pattern in historical fishing mortality for the two stocks in the blue-deacon fishery
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2.3 Obs and Imp Objects

The observation parameters are stored in an Obs object. For demonstration purposes, we use the example
Generic_Obs object from the MSEtool package for both stocks:

BObs <- Generic_Obs
DObs <- Generic_Obs

We also assume the management advice will be not have any implementation error by using the Perfect_Imp
Imp object:

BImp <- Perfect_Imp
DImp <- Perfect_Imp

These assumptions can easily be modified by replacing the Generic_Obs and Perfect_Imp objects with
other Obs and Imp objects included in MSEtool (e.g., see avail('Obs') and avail('Imp')) or customized
by modifying the values in the slots in the BObs, DObs, BImp, and DImp objects (see Obs Object and Imp
Object on the openMSE website for details).

2.4 Custom Parameters

We will use the Custom Parameters feature (referred to as cpars) to correlate the recruitment deviations of
the two stocks and to set the catchability coefficient to 1 (i.e., use the apical F shown above for the historical
spool-up period).

First, we create two empty lists to store the custom parameters:

Blue_cpars <- list()
Deacon_cpars <- list()

2.4.1 Correlated Recruitment Deviations

This step is only required if users wish to have a correlation structure in the recruitment deviations of stocks
within the multi-species fishery. If no correlation structure is desired between the stocks, the recruitment
deviations are calculated internally in the model and the following functions are not required.

We create a function to generate nsim samples of the annual recruitment deviations, where nsim is the
number of simulations:

Generate_RecDevs <- function(nsim, Stock, nyears, proyears) {
sigmaR <- runif(nsim, Stock@Perr[1], Stock@Perr[2])
AC <- runif(nsim, Stock@AC[1], Stock@AC[2])
procmu <- -0.5 * sigmaRˆ2 * (1 - AC)/sqrt(1 - ACˆ2)
maxage <- Stock@maxage
Perr_y <- array(rnorm((nyears + proyears+maxage) * nsim,

rep(procmu, nyears + proyears+maxage),
rep(sigmaR, nyears + proyears+maxage)),
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c(nsim, nyears + proyears+maxage))
# add auto-correlation (if any)
for (y in 2:(nyears + proyears+maxage))
Perr_y[, y] <- AC * Perr_y[, y - 1] + Perr_y[, y] * (1 - AC * AC)ˆ0.5

exp(Perr_y)
}

Then generate independent recruitment deviations for the blue and rockfish stocks with 50 simulations for a
50-year projection period:

nsim <- 50 # number of simulations
proyears <- 50 # number of projection years
Blue_cpars$Perr_y <- Generate_RecDevs(nsim=nsim, Stock=Blue,

nyears=BDFleet@nyears, proyears=proyears)
Deacon_cpars$Perr_y <- Generate_RecDevs(nsim=nsim, Stock=Deacon,

nyears=BDFleet@nyears, proyears=proyears)

To keep the run time of the simulations down, we are using nsim=50. In real applications it may be necessary
to increase nsim to obtain stable results.

Finally, we generate a correlation structure between the two sets of annual recruitment deviations using the
cornode function from the mc2d R package (Figure 2):

AddCorrelation <- function(cpars, target=0.5) {
tt <- require(mc2d)
if (!tt) stop('Package `mc2d` required for this function')

Perr_y_1 <- cpars[[1]]$Perr_y
Perr_y_2 <- cpars[[2]]$Perr_y
nsim <- dim(Perr_y_1)[1]
for (i in 1:nsim) {
tt <- mc2d::cornode(cbind(Perr_y_1[i,],Perr_y_2[i,]), target=target)
cpars[[1]]$Perr_y[i,] <- tt[,1]
cpars[[2]]$Perr_y[i,] <- tt[,2]

}
cpars

}
cpars <- AddCorrelation(list(Blue_cpars, Deacon_cpars), target=0.5)

2.4.2 Catchability

Because we set the actual apical F -by-year in the Fleet object, rather than a general scale-free pattern in
fishing effort, we need to tell the model to fix the catchability coefficient (q) to 1 for all simulations:

cpars[[1]]$qs <- rep(1, nsim)
cpars[[2]]$qs <- rep(1, nsim)
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Figure 2: An example of the independent and correlated recruitment deviations.
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2.5 Building the MOM Object

The components of the multi-stock operating model are stitched together into a object of class MOM (Multi-
Operating Model):

BD_MOM <- new("MOM",
Stocks=list(Blue, # blue Stock

Deacon), # deacon Stock
Fleets=list(list(BDFleet), # blue Fleet

list(BDFleet)), # deacon Fleet
Obs=list(list(BObs), # blue Obs

list(DObs)), # deacon Obs
Imps=list(list(BImp), # blue Imp

list(DImp)), # deacon Imp
CatchFrac=NULL,
proyears=proyears, # number of projection years
cpars=list( # cpars
list(cpars[[1]]), # blue cpars
list(cpars[[2]]) # deacon cpars

),
nsim=nsim, # number of simulations
maxF=3,
interval=1) # management procedure applied every year

3 Developing Management Procedures

In this section we demonstrate the development of example management procedures (MPs) that can be used
to evaluate the PFMC’s P* approach to the simulated multispecies fishery. For comparison, we also include
management procedures that provide stock-specific management advice (i.e., assessing and managing each
species separately with the P* approach).

3.0.1 Single-Species Stock Assessment of Multi-Species Stock

A stock assessment model estimates the vulnerable biomass, relative spawning biomass, and overfishing limit
from the aggregated multi-species fishery data. Here we demonstrate an example MP that uses the statistical
catch-at-age assessment model that uses Pope’s approximation (SCA_Pope) from the SAMtool package.

In this demonstration of the framework, we calculate F50% using the mean life-history parameters from the
two stocks within the multi-species fishery.

We create a generic MP function SCA_template that can be copied and modified to create other MPs.

Here x is simulation number, ranging from 1 to nsim, Data is a Data object containing the aggregated
multi-species fishery data, sigma, and pstar are arguments specifying the uncertainty buffer, interval is
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the assessment interval (the MP is run every year, but the SCA is only run in interval years), and incbuffer
is a logical argument specifying whether the uncertainty buffer should be increased in the years between
assessments.

SCA_template <- function(x, Data, sigma=0.5, pstar=0.45,
interval=4, incbuffer=TRUE, ...) {

update_years <- seq(1, by=interval, to=200)
yr_ind <- max(Data@Year)-Data@LHYear +1
if (yr_ind %in%update_years) { # run assessment and update advice

# run the SCA model
run_sca <- SAMtool::SCA_Pope(x, Data)
# predicted vulnerable biomass
VB <- run_sca@VB[length(run_sca@VB)]
# relative spawning biomass (depletion)
Dep <- run_sca@SSB_SSB0[length(run_sca@SSB_SSB0)]
# Flim (F50% SPR)
ind <- which.min(abs(run_sca@forecast$per_recruit$SPR-0.5))
Ulim <- run_sca@forecast$per_recruit$U[ind]
Flim <- 1-exp(-Ulim)
# Calculate OFL (Flim x VB)
Vula <- run_sca@TMB_report$vul
Fage <- Flim * Vula
Mage <- rep(Data@Mort[x], length(Fage))
Zage <- Fage + Mage
Nage <- run_sca@N_at_age[nrow(run_sca@N_at_age),]
Ca <- Fage/Zage*(1-exp(-Zage))*Nage
OFL <- sum(Ca*run_sca@obj$env$data$weight)
# Apply P* uncertainty buffer
buffer <- exp(stats::qnorm(pstar, 0, sigma))
ABC <- OFL*buffer
# Apply 40-10 HCR
ACL <- HCR4010(Dep, ABC)

} else {
# non-assessment year
# projection and apply buffer reduction
lst_assess <- max(update_years[update_years<yr_ind])
yr_since <- yr_ind - lst_assess
run_sca <- Data@Misc[[x]]$assess
Flim <- Data@Misc[[x]]$Flim
p <- SAMtool::projection(run_sca, Ftarget = Flim, p_years=yr_since+1,

process_error = 0, obs_error=list(0,0))
newDep <- p@VB[1,yr_since+1]/run_sca@VB0
OFL <- p@Catch[1,yr_since+1]
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# increasing buffer
if (!incbuffer) {

# constant buffer
new_buffers <- rep(exp(stats::qnorm(pstar, 0, sigma)), interval+1)

} else {
new_buffers <- get_buffer(1:(interval+1), sigma, pstar)

}
new_buffer <- new_buffers[yr_since+1]
ABC <- OFL*new_buffer
ACL <- HCR4010(newDep, ABC)

}
# create the management recommendation object
Rec <- new("Rec")
# store the ACL in the TAC slot
Rec@TAC <- ACL
# store the assessment results
Rec@Misc$assess <- run_sca
Rec@Misc$Flim <-Flim
# return Rec object
Rec

}
class(SCA_template) <- 'MP'

All MP functions must be assigned to class MP.

The 40-10 HCR used by the SCA MP is coded as:

HCR4010 <- function(Dep, ABC, b1=0.1, b2=0.4) {
if (Dep<b1) return(0)
if (Dep>b2) return(ABC)
ABC * (-(b1*b2)/(Dep*(b2-b1))+(b2/(b2-b1)))

}

And the uncertainty buffer is updated in the years between assessments with:

get_buffer <- function(years, sigma, pstar){
y <- 1:(length(years) - 1)
r <- 0.075
sigma_inc <- c(sigma, sigma * (1+(y)*r))
buffer <- exp(stats::qnorm(pstar, 0, sigma_inc))
round(buffer,3)

}

We can easily create additional MPs by copying SCA_template and modifying the sigma, pstar, and
interval arguments:
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# combined stock assessment
MP_1_4_cs <- SCA_template

MP_2_4_cs <- SCA_template
formals(MP_2_4_cs)$sigma <- 1

MP_3_4_cs <- SCA_template
formals(MP_3_4_cs)$sigma <- 2

# constant buffer in years between assessments
MP_4_4_cs <- SCA_template
formals(MP_4_4_cs)$sigma <- 2
formals(MP_4_4_cs)$pstar <- 0.4
formals(MP_4_4_cs)$incbuffer <- FALSE

# 10-year interval
MP_1_10_cs <- SCA_template
formals(MP_1_10_cs)$interval <- 10

MP_2_10_cs <- SCA_template
formals(MP_2_10_cs)$interval <- 10
formals(MP_2_10_cs)$sigma <-1

MP_3_10_cs <- SCA_template
formals(MP_3_10_cs)$interval <- 10
formals(MP_3_10_cs)$sigma <-2

MP_4_10_cs <- SCA_template
formals(MP_4_10_cs)$interval <- 10
formals(MP_4_10_cs)$sigma <- 2
formals(MP_4_10_cs)$pstar <- 0.4
formals(MP_4_10_cs)$incbuffer <- FALSE

# assign all functions to class `MP`
class(MP_1_4_cs) <- class(MP_2_4_cs) <- class(MP_3_4_cs) <-
class(MP_4_4_cs) <- class(MP_1_10_cs) <- class(MP_2_10_cs) <-
class(MP_3_10_cs) <- class(MP_4_10_cs) <- 'MP'

3.0.2 Stock-Specific Management

Next, we create a template management procedure that use stock-specific data and provides stock-specific
management advice.
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SCA_template_ms <- function(x, DataList, sigma=0.5, pstar=0.45,
interval=4, incbuffer=TRUE, ...) {

rec_out <- list()
# number of stocks
ns <- length(DataList)
for (st in 1:ns) {
Data <- DataList[[st]][[1]] # stock st, fleet 1
rec_out[[st]] <- list(SCA_template(x, Data, sigma=sigma, pstar=pstar,

interval=interval, incbuffer=incbuffer, ...))
}
rec_out

}
class(SCA_template_ms) <- 'MMP'

Here DataList is a list of stock-specific Data objects. This MP is of class MMP (multi-MP) and returns a
list of management recommendations, one for each stock (and, if there are more than 1, each fleet) in the
complex.

We can create the same set of MPs as those defined above by copying and modifying the arguments to
SCA_template_ms:

# multi-stock assessment
MP_1_4_ms <- SCA_template_ms

MP_2_4_ms <- SCA_template_ms
formals(MP_2_4_ms)$sigma <- 1

MP_3_4_ms <- SCA_template_ms
formals(MP_3_4_ms)$sigma <- 2

# constant buffer in years between assessments
MP_4_4_ms <- SCA_template_ms
formals(MP_4_4_ms)$sigma <- 2
formals(MP_4_4_ms)$pstar <-0.4
formals(MP_4_4_ms)$incbuffer <- FALSE

# 10-year interval
MP_1_10_ms <- SCA_template_ms
formals(MP_1_10_ms)$interval <- 10

MP_2_10_ms <- SCA_template_ms
formals(MP_2_10_ms)$interval <- 10
formals(MP_2_10_ms)$sigma <-1
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MP_3_10_ms <- SCA_template_ms
formals(MP_3_10_ms)$interval <- 10
formals(MP_3_10_ms)$sigma <-2

# constant buffer in years between assessments
MP_4_10_ms <- SCA_template_ms
formals(MP_4_10_ms)$interval <- 10
formals(MP_4_10_ms)$sigma <- 2
formals(MP_4_10_ms)$pstar <-0.4
formals(MP_4_10_ms)$incbuffer <- FALSE

# assign all functions to class `MMP`
class(MP_1_4_ms) <- class(MP_2_4_ms) <- class(MP_3_4_ms) <- class(MP_4_4_ms) <-
class(MP_1_10_ms) <- class(MP_2_10_ms) <- class(MP_3_10_ms) <-
class(MP_4_10_ms) <- 'MMP'

4 Closed-Loop Simulation Testing

Now that the multi-stock operating model has been created and we’ve defined a set of MPs, we can simulate
the historical fishery and run the projections to evaluate the performance of the alternative uncertainty
buffers.

4.1 Running the Closed-Loop Simulation

First we define the names of the 16 MPs we wish to test (8 MPs assuming a combined single stock (cs) and 8
MPs with stock-specific advice (ms) and 4 and 10 year assessment intervals):

MPs <- c('MP_1_4_cs', 'MP_2_4_cs', 'MP_3_4_cs', 'MP_4_4_cs',
'MP_1_4_ms', 'MP_2_4_ms', 'MP_3_4_ms', 'MP_4_4_ms',
'MP_1_10_cs', 'MP_2_10_cs', 'MP_3_10_cs', 'MP_4_10_cs',
'MP_1_10_ms', 'MP_2_10_ms', 'MP_3_10_ms', 'MP_4_10_ms')

And then use the multiMSE function to simulate the historical fishery and run the forward projections:

BD_MMSE <- multiMSE(BD_MOM, MPs=MPs, parallel = FALSE, checkMPs=FALSE)

And save the MMSE object to disk:

saveRDS(BD_MMSE, 'BD_MMSE.rda')

Note that multiMSE has option to run using parallel processing (parallel=TRUE) but our experience has
shown that it is often less memory intensive and quicker to run the multi-stock MSE using a single core
rather than distributing over multiple cores in parallel.

It also possible to split the simulations between the historical spool-up period and the forward projections
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using the SimulateMOM and ProjectMOM functions. This can be useful if the simulations for the spool-up
period are time-consuming.

For example:

# Simulate the historical spool-up period
Hist <- SimulateMOM(BD_MOM)

# Save historical simulation object to disc (can be quite large)
saveRDS(Hist, 'BD_multihist.rda')

# Forward projections with different sets of MPs
MMSE1 <- ProjectMOM(Hist, MPs=MPlist1)
MMSE2 <- ProjectMOM(Hist, MPs=MPlist2)

4.2 Examining the MMSE Object

The performance of the alternative stock assessment methods, harvest control rules, and uncertainty buffers
can be evaluated by examining the MMSE object returned by ProjectMOM.

Help information on the MMSE object is available in the usual way:

class?MMSE

The information most relevant for evaluating the performance of the MPs is stored in the SSB, SB_SBMSY,
F_FMSY, and Catch slots.

For example, the spawning stock biomass (SB) relative to SBMSY for each stock in the complex is available
in the SB_SBMSY slot:

dim(BD_MMSE@SB_SBMSY) # nsim, nstocks, nMPs, proyears

## [1] 50 2 16 50

Likewise, the fishing mortality relative to FMSY is in the F_FMSY slot, for each stock and fleet in the complex:

dim(BD_MMSE@F_FMSY) # nsim, nstocks, nfleets, nMPs, proyears

## [1] 50 2 1 16 50

Catches (landings) and removals are stored in the same way for each stock and fleet:

dim(BD_MMSE@Catch) # nsim, nstocks, nfleets, nMPs, proyears

## [1] 50 2 1 16 50

dim(BD_MMSE@Removals) # nsim, nstocks, nfleets, nMPs, proyears

## [1] 50 2 1 16 50

Finally, the biological reference points are available in the RefPoint slot. which contains reference points
calculated for each year (ByYear) and dynamic unfished reference points (Dynamic_Unfished).
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For example:

# SSB_MSY - by simulation, stock, MP, and historical and projection year
dim(BD_MMSE@RefPoint$ByYear$SSBMSY)

## [1] 50 2 16 167

4.3 Calculating Performance of the MPs

Performance can be calculated in many different ways. The information in the MMSE object can be used to
calculate performance metrics for the individual stocks within the complex, or combined across all stocks to
calculate performance metrics for the stock complex as a whole. Here we provide some examples of calculating
mean SB/SB0 and mean yield, as well as the probability that spawning biomass is above 0.25SB0.

Although the following code is specific to the MPs used in this example case study, the approach can be
generalized to calculate any performance metrics from an MMSE object.

We use the dplyr and ggplot2 libraries:

library(dplyr)
library(ggplot2)

First, we create a function to extract the relevant details from the MP names, and create a data frame with
the uncertainty buffer (in the first year after assessment), the assessment interval, and the assessment type
(combined stocks assessed together and by-stock assessments):

MP_details <- function(MP) {
tt <- get(MP)
buffer <- get_buffer(1, formals(tt)$sigma, formals(tt)$pstar)[1]
interval <- strsplit(MP, "_")[[1]][3] %>% as.numeric()
type <- strsplit(MP, "_")[[1]][4]
if (type =='cs') type <- 'Combined'
if (type =='ms') type <- 'By-Stock'
data.frame(MP=MP, Buffer=buffer, Interval=interval, Type=type)

}

df_mp <- lapply(BD_MMSE@MPs[[1]], MP_details) %>% do.call('rbind', .)
head(df_mp)

## MP Buffer Interval Type
## 1 MP_1_4_cs 0.939 4 Combined
## 2 MP_2_4_cs 0.882 4 Combined
## 3 MP_3_4_cs 0.778 4 Combined
## 4 MP_4_4_cs 0.602 4 Combined
## 5 MP_1_4_ms 0.939 4 By-Stock
## 6 MP_2_4_ms 0.882 4 By-Stock
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Next, we create a function to extract the relevant information from the MMSE object and return the information
in a data frame. In this case we are interested in the relative spawning biomass (SB/SB0) and the yield by
simulation, MP, and year, for each stock in the multispecies model, and for the combined stocks (summing
the stocks together):

extract_data <- function(MMSE) {
nyears <- MMSE@nyears
proyears <- MMSE@proyears
ns <- length(MMSE@Stocks)
nsim <- MMSE@nsim
nMPs <- MMSE@nMPs
# projection years
p_yrs <- (nyears+1):(nyears+proyears)
# Calculate SB/SB0 and Yield for each stock
SB0_C <- SB_C <- relSB <- Yield <- list()
for (st in 1:ns) {

# unfished spawning biomass by sim and year for st
SB0_C[[st]] <- MMSE@RefPoint$ByYear$SSB0[,st,,p_yrs]
# spawning biomass by sim and year for st
SB_C[[st]] <- MMSE@SSB[,st,,]
# relative spawning biomass
relSB[[st]] <- SB_C[[st]]/SB0_C[[st]]
# yield relative to MSY by sim and year for st
Yield[[st]] <- MMSE@Removals[,st,1,,]/MMSE@RefPoint$ByYear$MSY[,st,,p_yrs]

}
df_list <- list()
for (st in 1:ns) {
df_list[[st]] <- data.frame(sim=1:nsim,

MP=rep(MMSE@MPs[[1]], each=nsim),
Year=rep(1:proyears, each=nsim*nMPs),
relSB=as.vector(relSB[[st]]),
Yield=as.vector(Yield[[st]]),
Stock=MMSE@Stocks[[st]]@Name)

}
# Calculate SB/SB0 and Yield for combined stocks
SB0_C <- Reduce(`+`, SB0_C)
SB_C <- Reduce(`+`, SB_C)
relSB[[ns+1]] <- SB_C/SB0_C
Yield[[ns+1]] <- Reduce(`+`, Yield)
df_list[[ns+1]] <- data.frame(sim=1:nsim,

MP=rep(MMSE@MPs[[1]], each=nsim),
Year=rep(1:proyears, each=nsim*nMPs),
relSB=as.vector(relSB[[ns+1]]),
Yield=as.vector(Yield[[ns+1]]),
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Stock='Combined Stocks')

df_all <- do.call('rbind', df_list)
df_mp <- lapply(MMSE@MPs[[1]], MP_details) %>% do.call('rbind', .)
DF <- left_join(df_mp, df_all, by='MP')
stock_names <- DF$Stock %>% unique()
type_names <- DF$Type %>% unique()
DF$Stock <- factor(DF$Stock, levels=stock_names,

ordered = TRUE)
DF$Type <- factor(DF$Type, levels=type_names,

ordered = TRUE)
DF

}

DF <- extract_data(BD_MMSE)
head(DF)

## MP Buffer Interval Type sim Year relSB Yield Stock
## 1 MP_1_4_cs 0.939 4 Combined 1 1 0.2899069 0.59846557 Blue
## 2 MP_1_4_cs 0.939 4 Combined 2 1 0.3993369 0.41769571 Blue
## 3 MP_1_4_cs 0.939 4 Combined 3 1 0.2835697 0.77970676 Blue
## 4 MP_1_4_cs 0.939 4 Combined 4 1 0.3098269 0.06480535 Blue
## 5 MP_1_4_cs 0.939 4 Combined 5 1 0.2818066 0.07132160 Blue
## 6 MP_1_4_cs 0.939 4 Combined 6 1 0.3348874 0.78705116 Blue

Note that our models our scaleless (we used an arbitrary R0) so the yield metrics are calculate relative to
MSY.

Now that we have the relevant information in a data frame, we can create plots to summarize the data.

4.3.1 Mean Relative Spawning Biomass

DF_mean <- DF %>% group_by(MP, Year, Stock, Buffer, Interval, Type) %>%
summarize(MeanSB=mean(relSB), MeanY=mean(Yield), .groups = 'keep')

ggplot(DF_mean,
aes(x=Year, y=MeanSB, color=as.factor(Buffer),

linetype=as.factor(Interval))) +
facet_grid(Type~Stock) +
geom_line() +
theme_bw() +
expand_limits(y=c(0,1)) +
geom_hline(yintercept = 0.25, linetype=2) +
labs(x='Projection Year',
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y='Mean SB/SB0',
color='Buffer (initial)',
linetype='Assessment interval')
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4.3.2 Mean Relative Yield for each Stock

ggplot(DF_mean %>% filter(Stock !='Combined Stocks'),
aes(x=Year, y=MeanY, color=as.factor(Buffer),

linetype=as.factor(Interval))) +
facet_grid(Type~Stock) +
geom_line() +
theme_bw() +
expand_limits(y=c(0,1)) +
labs(x='Projection Year',

y='Mean Relative Yield',
color='Buffer (initial)',
linetype='Assessment interval')
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4.3.3 Probability SB>0.25SB0 in each year

DF_prob <- DF %>% group_by(MP, Year, Stock, Buffer, Interval, Type) %>%
summarize(Prob=mean(relSB>0.25), .groups = 'keep')

ggplot(DF_prob, aes(x=Year, y=Prob, color=as.factor(Buffer),
linetype=as.factor(Interval))) +

facet_grid(Type~Stock) +

geom_line() +
theme_bw() +
labs(x='Projection Year',

y='Probability SB>0.25SB0',
color='Buffer (initial)',
linetype='Assessment interval')
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4.3.4 Trade-off plots of Prob SB>0.25SB0 and Yield in last 10 years

yrs <- 41:50
DF_prob2 <- DF %>% group_by(MP, Stock, Buffer, Interval, Type) %>%
filter(Year %in% yrs) %>%
summarize(Prob=mean(relSB>0.25),

meanY=mean(Yield),
lowY=quantile(Yield,0.1),
highY=quantile(Yield,0.9),
.groups = 'keep')

ggplot(DF_prob2 %>% filter(Stock !='Combined Stocks'),
aes(x=Prob, y=meanY, color=as.factor(Buffer),

shape=as.factor(Interval))) +
facet_grid(Type~Stock) +
geom_point(size=1.5) +
geom_errorbar(aes(ymin=lowY, ymax=highY)) +
xlim(0.5,1) +
theme_bw() +
labs(x='Prob. SB>0.25SB0',
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y='Mean relative yield (80th percentiles)',
color="Buffer",
shape='Assessment interval') +

theme(legend.position = 'bottom')
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