By default, the life-history information provided to the Management Procedures is determined by the real life-history values specified in the OM (e.g., OM@Linf
) and the bias specified in the observation model.
For example:
OM <- new('OM', Albacore, Generic_IncE, Generic_Obs, Perfect_Imp, nsim=4)
Hist <- Simulate(OM, silent=TRUE)
# OM Linf values in last historical year
Hist@SampPars$Stock$Linfarray[,OM@nyears]
## [1] 128.9126 127.0029 130.6198 131.4645
# Linf values provided to MP in this year (ie in simulated Data)
Hist@Data@vbLinf
## [1] 131.5341 126.8888 131.0243 137.1029
# Observation error applied to OM values
Hist@SampPars$Stock$Linfarray[,OM@nyears] * Hist@SampPars$Obs$Linfbias
## [1] 131.5341 126.8888 131.0243 137.1029
Users can provide specific values for the life-history parameters by including them in the Data object. We demonstrate here with Linf
, but the same concept applies for all life-history parameters (M
, K
, L50
, etc).
Add Life-History Data to OM
Create a blank Data object:
Data <- new('Data')
Add our ’observedvalues for
Linf` - i.e., the values we wish to provide to the MPs:
Data@vbLinf <- 100
Add Data
to OM
:
OM@cpars$Data <- Data
Simulate the spool-up period (now with Data included in the OM):
Hist <- Simulate(OM, silent=TRUE)
Our ‘observed’ life-history parameters are now provided to the MPs:
Hist@Data@vbLinf
## [1] 100 100 100 100
Similar to conditioning with other data, when real life-history values are provided in the Data
object, the observation parameters (e.g., Obs@Linfbiascv
) are ignored.